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While diffusion has been well studied, diffusion across multiple layers, each with different properties, has
had less attention. This type of diffusion may arise in heat transport across composite materials or lay-
ered biological material. Usually of most interest is a critical time, such as the time for a material to heat
up. Here an exact solution is found which is used to numerically demonstrate the critical time behaviour
for transport across multiple layers with imperfect contact. This solution illustrates the limitations of tra-
ditional averaging methods, which are only good for a large number of layers.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Diffusion through multiple layers has applications to a wide
range of areas in heat and mass transport. Industrial applications
include annealing steel coils [1–3], the performance of semicon-
ductors [4] and electrodes [5,6], and geological profiles [7]. Biolog-
ical applications include determining the effectiveness of drug
carriers inserted into living tissue [8], the probing of biological tis-
sue with infrared light [9], and analysing the heat production of
muscle [10].

For multilayer diffusion across n layers the standard diffusion
equation,

@Ui

@t
¼ Di

@2Ui

@x2 ; i 2 ½1; n�; ð1Þ

is applicable in each layer where xi�1 6 x 6 xi is distance, Ui is the
temperature in layer i at time t, and Di is the diffusivity of layer i,
as shown in Fig. 1. For clarity, in subsequent sections the notation
di �

ffiffiffiffiffi
Di
p

is also used.
Exact solutions for diffusion in layered media have been found

for diverse applications and geometries. These include solutions
in Cartesian coordinates for two layers [8,11,12] and n layers
[13–17], and cylindrical n layer solutions [18,19]. Many of the pub-
lications use mathematical separation methods similar to that out-
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lined in Sections 2 and 3 of this article. However, previous
publications that use separation methods, and also consider Carte-
sian coordinates, assume perfect contact between the layers [13–
17] and some [13,14,17] have less general boundary conditions. La-
place transform approaches are also used [5,20], but are less com-
mon due to the difficulty of the inverse transforms, which are often
only numerically found.

An important aspect of multilayer diffusion is the ‘critical time’,
which is a measure of how long the diffusive process takes. There
are multiple definitions of critical time since mathematically, an
infinite amount of time is required to reach steady state [21].
One definition, appropriate in the annealing of steel coils [1–3],
is when the coldest point in the coil reaches a given temperature.
A common and more general definition we consider here is the
time when the average temperature reaches a given or specified
proportion of the average steady state. That is, the value of t ¼ tc

such thatZ L

x¼0
Uðx; tcÞdx ¼ a

Z L

x¼0
wðxÞdx; ð2Þ

where Uðx; tÞ is the temperature, 0 < a < 1 is a chosen constant, and
wðxÞ is the steady state. Landman and McGuinness [21] summarise
previous work and applications using this critical time definition,
also called the mean action time [22,23].

The most common approximation of critical time (see for exam-
ple [24–28]), is the simple expression

tav ¼
L2

6Dav
; ð3Þ
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Nomenclature

ci layer specific heat
D ¼ d2 single layer diffusivity
Dav ¼ d2

av average diffusivity
Di ¼ d2

i layer diffusivity
f ðxÞ initial condition
L total length of medium
li layer width
Hi contact transfer coefficient
n total number of layers
t time
tav typical critical time
tc multilayer critical time
ts single layer critical time
Uðx; tÞ temperature
vðx; tÞ transient solution
wðxÞ steady state solution

Additional notation
½A;B� shorthand for n=2 biperiodic layers, material properties

DA;DB as ABAB . . . AB
x spatial position

Greek symbols
a proportion of the steady state
jav average conductivity
ji layer conductivity
km multilayer eigenvalues
lm single layer eigenvalues
qi layer density
h1 boundary condition at x ¼ x0

h2 boundary condition at x ¼ xn

Subscripts
i layer index
m eigenvalue index

Fig. 1. Multilayer schematic showing the nomenclature. Here Ui is the temperature
in layer i at time t;Di is the diffusivity of a given layer and li is the width of the layer.

Fig. 2. Single layer diffusion for Uðx; tÞ, length L, and a single diffusivity, D.
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where Dav is the commonly averaged diffusivity for layered materi-
als, given by

L
Dav
¼
Xn

i¼1

li
Di
: ð4Þ

Here L is the total medium length, and li are the lengths of each
layer with material diffusivity Di. This series-averaged diffusivity
is a valid measure when calculating heat fluxes at steady state, or
for a large number of layers. The critical time, Eq. (3), is found using
the exact solution for the one layer problem, with different surface
concentrations [26]. The flux, Qt , is calculated at x ¼ x0 and inte-
grated over time. The asymptotic line is found, as t !1, and is
rearranged for t when Qt ¼ 0. See Crank [26, pp. 47–48], for a more
detailed explanation. Eq. (3) corresponds to the critical time defini-
tion given in Eq. (2) for a � 0:8435, a result calculated in Section 2.
Here a corresponds to the asymptotic analysis conducted by Crank
[26] to quantify a ‘breakthrough’ or ‘lag’ time. However, Eq. (3) is
only strictly valid for a single layer of material. Absi et al. [29] de-
scribe a brief numerical and experimental comparison using Eq.
(3) versus the full coupled numerical system for two layers. Their
results indicate the limitations of this formula, a result we corrobo-
rate in our numerical simulation shown in Fig. 3.

Several publications have attempted to calculate a diffusive
critical time through composites, in Cartesian, cylindrical and
spherical geometries with Ash et al. [24,30] giving detailed solu-
tions. These are summarised in Barrer [25] for some of the usual
layer configurations, such as two repeated layers, ABAB . . ., also re-
ferred to as a ‘biperiodic region’. Their complicated derivation is
equivalent to choosing a � 0:8435 in Eq. (2). However, as discussed
in detail in our companion paper [31], their result is only as accu-
rate as the approximate result given by Eq. (3), that is of the order
of 10–50%. Aguirre et al. [4] determined a solution for sinusoidally
imposed temperature, calculating an effective diffusivity for a com-
posite material. Their result is an improved version of the series-
averaged diffusivity given in Eq. (4). The effective diffusivity was
found in terms of the imposed frequency where Eq. (4) is reflected
in the low frequency limit when the material is in quasi-steady
state.

Previous work [14] explored a different definition of critical
time, where the temperature at the end of the region reached a
critical threshold. This definition is only applicable for an insulated
boundary condition, whereas a more general definition which is
not dependent on the boundary conditions is now considered. Also,
we consider here the more general case of imperfect contact be-
tween the layers.

We will show standard Eqs. (3) and (4) give inaccurate results.
The exact solution is found for diffusion in a one-dimensional
Cartesian material with only one layer in Section 2. This is ex-
tended to the more complicated multilayer case in Section 3 where
the solutions are also verified. The critical time is calculated
numerically in Section 4 and discussed in Section 5.

2. Single layer solution

In this section we find an exact solution for the single layer case.
Whilst not original (see for example [32]), this will demonstrate
the solution method used for the more difficult multilayer diffu-
sion problem in Section 3. Additionally, these results will assist
in understanding the definition and behaviour of critical time.
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The single layer case is depicted in Fig. 2, where

@U
@t
¼ D

@2U
@x2 ; ð5Þ

for some initial condition, Uðx;0Þ ¼ f ðxÞ, and mixed boundary
conditions,

a1U þ b1
@U
@x
¼ h1 at x ¼ x0;

a2U þ b2
@U
@x
¼ h2 at x ¼ x1; ð6Þ

where a1; a2; b1; b2; h1 and h2 are constants.
Due to the boundary conditions the problem must be split into

the steady state, wðxÞ, and transient, vðx; tÞ, components [32]
where Uðx; tÞ ¼ wðxÞ þ vðx; tÞ. The steady state solution is found
by integrating and substituting in the boundary conditions to give

wðxÞ ¼ ða1h2 � a2h1Þðx� x0Þ þ h1ða2Lþ b2Þ � b1h2

a1a2Lþ a1b2 � a2b1
: ð7Þ

It has been assumed that a1 and a2 cannot both be zero. If
a1 ¼ 0 ¼ a2 then a solution only exists if b2h1 ¼ b1h2; otherwise
the finite medium has an unbalanced heat input giving rise to un-
bounded temperature.

The transient solution, vðx; tÞ, satisfies

@v
@t
¼ D

@2v
@x2 ; ð8Þ

a1v þ b1
@v
@x
¼ 0 at x ¼ x0; ð9Þ

a2v þ b2
@v
@x
¼ 0 at x ¼ x1; ð10Þ

vðx;0Þ ¼ gðxÞ; ð11Þ
where gðxÞ ¼ f ðxÞ �wðxÞ. This can be solved using separation of
variables where vðx; tÞ ¼ XðxÞTðtÞ, resulting in

TðtÞ ¼ e�l
2
mt; ð12Þ

and the eigenfunction solutions

XmðxÞ ¼ sin
lm

d
ðx� x0Þ

� �
� b1lm

a1d
cos

lm

d
ðx� x0Þ

� �
; ð13Þ

where we use the simpler notation d ¼
ffiffiffiffi
D
p

and the eigenvalues, lm,
satisfy

sin
lmL

d

� �
a1a2d
lm

þ b1b2lm

d

� �
þ cos

lmL
d

� �
a1b2 � a2b1½ � ¼ 0: ð14Þ

Therefore the transient solution is

vðx; tÞ ¼
X1
m¼1

Ame�l2
mtXmðxÞ; ð15Þ

where Am is determined by Sturm–Liouville theory as

Am ¼
R x1

x0
gðxÞXmðxÞdxR x1
x0

X2
mðxÞdx

: ð16Þ

Hence the complete solution is

Uðx; tÞ ¼ wðxÞ þ
X1
m¼1

Ame�l2
mtXmðxÞ: ð17Þ

Eq. (2) can now be written as

ð1� aÞ
Z x1

x¼x0

wðxÞdxþ
Z x1

x¼x0

vðx; tsÞdx ¼ 0; ð18Þ
for a given critical time, t ¼ ts.
For illustrative purposes we consider the simpler case of con-

stant boundary conditions, where a1 ¼ 1 ¼ a2 and b1 ¼ 0 ¼ b2 in
Eq. (6). These give lm ¼ mpd=L and when f ðxÞ ¼ 0;Am ¼ 2ðh2

ð�1Þm � h1Þ=ðmpÞ. The critical time is then evaluated using Eqs.
(17) and (18) to give

ð1� aÞðh1 þ h2Þ þ 4
X1
m¼1

½1þ ð�1Þmþ1�
ðmpÞ2

h2ð�1Þm � h1
	 


e�l2
mts ¼ 0:

ð19Þ

Due to the infinite sum over the eigenvalues, Eq. (19) cannot explic-
itly be solved for the critical time, ts. However for large enough
times this solution is dominated by the leading order eigenvalue.
Hence, if only the leading eigenvalue is considered, when m ¼ 1,
Eq. (19) can be rearranged to give

ts �
L2

p2D
log

8
p2ð1� aÞ

� �
: ð20Þ

Here log refers to the natural logarithm, loge, to avoid confusion
with later notation. The critical time must be positive, therefore
ð1� 8=p2Þ < a < 1. Equating this to Eq. (3) gives a ¼ 1� ð8=p2Þ
expð�p2=6Þ � 0:8435.

Similarly, for an insulated boundary at x ¼ x1, where
a1 ¼ 1; a2 ¼ 0; b1 ¼ 0; b2 ¼ 1 and h2 ¼ 0 in Eq. (6), the critical time
for the leading eigenvalue is

ts �
4L2

p2D
log

8
p2ð1� aÞ

� �
: ð21Þ

Equating this to Eq. (3) gives a ¼ 1� ð8=p2Þ expð�p2=24Þ � 0:4627.
The difference between Eqs. (20) and (21) is of interest, as it shows
the insulated case reaches the critical temperature four times more
slowly than the non-insulated case. This is a direct consequence of
the chosen definition of critical time, since the insulated case has a
much higher steady state temperature to reach.
3. Multilayer solutions

In this section the multilayer solution for general boundary con-
ditions are found using the same method as the single layer, by
splitting the solution into the steady state, wiðxÞ, and transient,
v iðx; tÞ, components.

In many situations the contact between layers is imperfect giv-
ing rise to a jump condition in U:

ji
@Ui

@x
¼ HiðUiþ1 � UiÞ; ð22Þ

jiþ1
@Uiþ1

@x
¼ HiðUiþ1 � UiÞ; ð23Þ

at x ¼ xi for i ¼ 1;2; . . . ; ðn� 1Þwhere Hi is the contact transfer coef-
ficient and ji ¼ Diqici is the conductivity, qi is the density and ci is
the specific heat of layer i. The imperfect contact is depicted in Fig. 3
using temperature profiles, clearly demonstrating the ‘jump’ at the
interfaces. This reflects roughness [1] and contact resistance [32]. If
Hi !1 then contact becomes perfect and hence this limit repre-
sents the equivalent matching conditions

Uiðxi; tÞ ¼ Uiþ1ðxi; tÞ; ð24Þ

ji
@Ui

@x


xi

¼ jiþ1
@Uiþ1

@x


xi

; ð25Þ

which represent continuity in ‘temperature’ and flux, respectively.
For Eq. (3) to still be valid for the case of imperfect contact, Eq.
(4) must be extended to include the contact resistance, such that
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L
Dav
¼
Xn

i¼1

li
Di
þ
Xn�1

i¼1

1
Hi
: ð26Þ

As Hi !1 , Eq. (26) approaches Eq. (4).
After Eq. (1) has been split into steady state and transient parts,

the steady state solution, wiðxÞ, satisfies

Di
@2wi

@x2 ¼ 0; ð27Þ

a1w1 þ b1
@w1

@x
¼ h1 at x ¼ x0; ð28Þ

a2wn þ b2
@wn

@x
¼ h2 at x ¼ xn; ð29Þ

ji
@wi

@x
¼ Hiðwiþ1 �wiÞ; ð30Þ

jiþ1
@wiþ1

@x
¼ Hiðwiþ1 �wiÞ: ð31Þ

Integrating Eq. (27) results in

wiðxÞ ¼ qiðx� xi�1Þ þ hi; ð32Þ

where qi and hi are constants. Using the boundary conditions, Eqs.
(28) and (29), respectively give

h1 ¼
h1 � b1q1

a1
;

ða2ln þ b2Þqn þ a2hn ¼ h2; ð33Þ

and the interface conditions, Eqs. (30) and (31), result in recursively
defined constants:

qiþ1 ¼
ji

jiþ1
qi ¼

j1

jiþ1
q1; ð34Þ

hiþ1 ¼ hi þ qi
ji

Hi
þ li

� �
¼ h1 þ

Xi

j¼1

jj

Hj
þ lj

� �
qj: ð35Þ

These are used to calculate qn and hn, which are substituted back
into Eq. (33) to find q1. After some algebra,

q1 ¼
jnða1h2 � a2h1Þ

a1b2j1 � a2b1jn þ a1a2j1jn
L

jav
þ
Pn�1

j¼1
1
Hj

� � ; ð36Þ

where

L
jav
¼
Xn

i¼1

li

ji
: ð37Þ

Furthermore,

qi ¼
j1

ji
q1; ð38Þ

hi ¼ h1 þ j1q1

Xi�1

j¼1

lj

jj
þ 1

Hj

� �
: ð39Þ
The inclusion of jav in Eq. (36) is interesting as it shows averaging of
the material properties.

The transient solution, v iðx; tÞ, satisfies

@v i

@t
¼ Di

@2v i

@x2 ; ð40Þ

a1v1 þ b1
@v1

@x
¼ 0 at x ¼ x0; ð41Þ

a2vn þ b2
@vn

@x
¼ 0 at x ¼ xn; ð42Þ

ji
@v i

@x
¼ Hiðv iþ1 � v iÞ; ð43Þ

jiþ1
@v iþ1

@x
¼ Hiðv iþ1 � v iÞ: ð44Þ

v iðx;0Þ ¼ fiðxÞ �wiðxÞ ¼ giðxÞ: ð45Þ

Using separation of variables, where v iðx; tÞ ¼ XiðxÞTðtÞ, results in

TðtÞ ¼ e�k2
mt ; ð46Þ

and the eigenfunction solutions

Xi;mðxÞ ¼ Ji;m sin
km

di
ðx� xi�1Þ

� �
þ Ki;m cos

km

di
ðx� xi�1Þ

� �
; ð47Þ

where Ji;m and Ki;m are constants and km are the eigenvalues. Apply-
ing the boundary and interface conditions to Eq. (47) results in a
series of expressions that can be rewritten in terms of one of the
constants, chosen here as J1;m. Hence in Eq. (47), J1;m has been cho-
sen to equal one by normalisation of the eigenfunction. From Eq.
(41)

K1;m ¼
�b1km

a1d1
; ð48Þ

from Eq. (44)

Jiþ1;m ¼
jidiþ1

jiþ1di
Ji;m cos km

li

di

� �
� Ki;m sin km

li

di

� �� �
; ð49Þ

and from Eq. (43)

Kiþ1;m ¼ Ji;m sin km
li
di

� �
þ jikm

diHi
cos km

li

di

� �� �

þ Ki;m
�jikm

diHi
sin km

li

di

� �
þ cos km

li

di

� �� �
: ð50Þ

The eigenvalues, km, are defined by the transcendental expression

Jn;m a2 sin km
ln

dn

� �
þ kmb2

dn
cos km

ln
dn

� �� �

þ Kn;m �
kmb2

dn
sin km

ln

dn

� �
þ a2 cos km

ln

dn

� �� �
¼ 0; ð51Þ

which comes from Eq. (42). Note Ji;m and Ki;m are recursively
defined.

The transient solution is then

v iðx; tÞ ¼
X1
m¼1

Cme�k2
mtXi;mðxÞ: ð52Þ

Using the initial condition,

v iðx;0Þ ¼ giðxÞ ¼
X1
m¼1

CmXi;mðxÞ; ð53Þ

to solve for the summation constant, Cm, a suitable orthogonality
condition must be used. The following orthogonality condition is
proven in Appendix A.1,

Xn

i¼1

qici

Z xi

xi�1

Xi;mðxÞXi;pðxÞdx ¼
0;m – p

1;m ¼ p

�
ð54Þ
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where 1 is a constant. Using this gives

Cm ¼
Pn

i¼1qici
R xi

xi�1
giðxÞXi;mðxÞdxPn

i¼1qici
R xi

xi�1
X2

i;mðxÞdx
: ð55Þ

The complete solution is therefore

Uiðx; tÞ ¼ wiðxÞ þ
X1
m¼1

Cme�k2
mtXi;mðxÞ; ð56Þ

and has the same form as Eq. (17).
We will now investigate the case of Hi !1; when the jump

interface solution approaches the matching interface solution. First
consider the steady state coefficients, Eqs. (36) and (39). As
Hi !1,

q1 ¼
jnða1h2 � a2h1Þ

a1b2j1 � a2b1jn þ a1a2j1jn
L

jav

� � ð57Þ

and

hi ¼ h1 þ j1q1

Xi�1

j¼1

lj

Dj
: ð58Þ

The only equation involving the jump for the transient solution is
Eq. (50). As Hi !1,

Kiþ1;m ¼ Ji;m sin km
li

di

� �
þ Ki;m cos km

li

di

� �
: ð59Þ

The critical time for multiple layers, tc , is found by solving the
equivalent multilayer version of Eq. (18):

ð1� aÞ
Xn

i¼1

Z xi

xi�1

wiðxÞdxþ
Xn

i¼1

Z xi

xi�1

v iðx; tcÞdx ¼ 0: ð60Þ

Substituting the solutions from Eqs. (32), (47) and (52) then gives

ð1� aÞ
Xn

i¼1

hili þ
qil

2
i

2

( )
þ
Xn

i¼1

di

X1
m¼1

Cm

km
e�k2

mtc Wi;m ¼ 0; ð61Þ

where

Wi;m ¼ Ji;m 1� cos
kmli

di

� �� �
þ Ki;m sin

kmli

di

� �
: ð62Þ

Although this could be approximated using the leading eigenvalue,
as done in Section 2, the expression is still complicated and does not
provide further insight to the multilayer critical time behaviour.
However, the critical time can be calculated numerically using Eq.
(61), and is denoted ‘Num.’ in later analysis.

The analytical solutions given by Eqs. (17) and (56) were veri-
fied for multiple scenarios against two different numerical solu-
tions to Eq. (1). The first scheme used finite differences,
explained in Appendix A.2, and was implemented in MATLAB [33].
The second uses the commercial finite elements package FLEXPDE

[34]. Agreement between the two numerical schemes and the ana-
lytical solutions were found to within expected numerical
accuracy.

4. Numerical results

To explore the behaviour of the multilayer critical time a bipe-
riodic region is considered, with n=2 repeating layers with ‘A’ and
‘B’ properties such as layer width, lA and lB, and diffusivity, DA and
DB. That is, there are n layers in total with repeated layers
ABAB . . . AB, denoted in shorthand by ½A;B� or equivalently ½DA;DB�.
The region is defined with x0 ¼ 0 and xn ¼ 1, hence L ¼ 1. For sim-
plicity here, equal widths for both layers are used, so li ¼ 1=n, but
in general this is not necessary. Different diffusivities are used in
each layer, where the larger diffusivity D ¼ 1 and the smaller diffu-
sivity D ¼ 0:1. For simplicity, we let the conductivity parameters
qici ¼ 1 and the contact resistance Hi ¼ 20, for all layers. The initial
condition used is fiðxÞ ¼ 0 and the proportion of the steady state is
a ¼ 0:4627.

Constant boundary conditions are used for Fig. 4, where
a1 ¼ 1 ¼ a2 and b1 ¼ 0 ¼ b2; h1 ¼ 1 and h2 ¼ 0. Three different sce-
narios are presented in Fig. 4 for the critical time as a function of
the number of repeated layers, n=2. The first scenario uses [1,
0.1] periodic layers, and the second scenario uses [0.1, 1]. The third
‘Single Dav’ scenario averages the diffusivities using Eq. (26), and
calculates the critical time for the single layer solution, Eq. (20).
Of interest is the convergence of the ‘Num. [1, 0.1]’ and ‘Num.
[0.1, 1]’ scenarios from different sides of the averaged solution
and the local maxima for the ‘Num. [0.1, 1]’ scenario. The case
where a ¼ 0:8435 is not explored here as it is considered in Part
2 [31], where similar behaviour is also found.

Similar scenarios are explored in Fig. 5, but for different bound-
ary conditions. The boundary condition at x ¼ x0 is made constant,
with a1 ¼ 1; b1 ¼ 0 and h1 ¼ 1, and the boundary condition at
x ¼ xn is insulated, with a2 ¼ 0; b2 ¼ 1 and h2 ¼ 0. Both the ‘Num.
[1, 0.1]’ and ‘Num. [0.1, 1]’ scenarios are symmetric about the ‘Sin-
gle Dav’ scenario for Fig. 5. Note the ‘Num. [0.1, 1]’ solution does not
give a local maximum as in Fig. 4. Since a ¼ 0:4627, this result is
directly comparable with Eq. (3) using Eq. (26).

Both Figs. 4 and 5 demonstrate that a relatively large number of
layers are required for accurate results when using the traditional
averaging approach, Eq. (26). In particular, the averaging method
has an error of approximately 10% for 10 repeated layers, or 20 lay-
ers in total. However, the error can be as high as 50% for two layers.
The magnitude of this error is discussed in more detail in the com-
panion paper [31], which uses a perturbation solution to find an
expression for this critical time, and hence the magnitude of the er-
ror as a function of the number of layers and the diffusivities. The
effect of varying diffusivities is discussed in the companion paper
[31], for the simpler case of perfect contact between layers. There
it is shown that as DA ! DB the numerical critical time approaches
the approximation, Eq. (3). For the parameters chosen here, the dif-
ference between the numerical and approximate critical times can
be as much as 50%, naturally decreasing as the number of layers is
increased.
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Previous work [14] demonstrated the limitations of the averag-
ing approach using Eq. (4), for specific boundary conditions (as per
Fig. 5) and using a different definition of critical time, where
Unðxn; tcÞ ¼ Uc .

The main effect of imperfect contact on these results is the con-
verging critical time having a positive slope. As the contact resis-
tance, Hi, decreases the slope of the averaged solution increases.
Hence as Hi !1, the slope becomes zero, limiting to the case of
perfect contact shown in Part 2 [31].

Although the numerical implementations provide some insight
as to how the behaviour differs for multiple layers as opposed to a
single layer, it fails to explain why this difference occurs. Hence in
Hickson et al. [31] we explore an approximate perturbation of the
exact solution which will illuminate this behaviour, and explain
the local maximum found in the ‘Num. [0.1, 1]’ scenario in Fig. 4.
5. Discussion and conclusion

The most interesting point illustrated with this work is that lay-
ered materials do not exhibit symmetric properties. That is, the
time taken to diffuse depends greatly on which order the materials
are layered. Hence this work can be used to consider the inverse
problem, where it is possible to apply the critical time to determine
the individual properties of the layered materials. That is, two
measurements of critical time, with the material direction
switched, are sufficient to determine the properties of each indi-
vidual layer. For example a possible experimental set up would in-
volve raising the temperature of the material at x ¼ x0 with a
thermocouple at x ¼ xn, and then reversing the experiment such
that the temperature is raised at x ¼ xn and the thermocouple
placed at x ¼ x0.

Although only one definition for critical time has been explored
here, it is possible to apply the exact solutions found to alternative
definitions. Previous work [14] explored the effect of the tempera-
ture threshold on the critical time behaviour for an insulated
boundary at x ¼ xn and perfect contact. This work showed the same
nonsymmetric behaviour as found here for the more general defi-
nition. The method used to find the exact solutions is extendable to
cylindrical and spherical coordinates.

In summary, exact solutions were found for multilayer diffu-
sion, with general boundary and interface conditions. These solu-
tions were then used to numerically demonstrate the limitations
of the traditional averaging methods, Eqs. (3) and (26). We demon-
strated the symmetric convergence behaviour of critical time with
number of layers and the differences caused by the layer order.
Appendix A

A.1. Proof of orthogonality condition

The orthogonality condition for n-layers is proven here for per-
fect contact using standard Sturm–Liouville theory. The original
eigenfunction equation, which results from the separation of Eq.
(40), is

@2Xi;m

@x2 ¼ um

Di
Xi;m; i 2 ½1;n�; ð63Þ

for the ith layer and mth eigenvalue, where um ¼ �k2
m. Multiplying

both sides of Eq. (63) by Xi;p, for the pth eigenvalue where m – p,
and integrating givesZ xi

xi�1

Xi;pX00i;mdx ¼ um

Di

Z xi

xi�1

Xi;pXi;mdx ð64Þ

and similarly, for the other eigenvalue,
Z xi

xi�1

Xi;mX 00i;pdx ¼
up

Di

Z xi

xi�1

Xi;mXi;pdx: ð65Þ

Subtracting Eq. (65) from Eq. (64), using integration by parts and
simplifying gives

ðum �upÞ
Z xi

xi�1

Xi;mXi;pdx ¼ Di Xi;pX0i;m
h ixi

xi�1

� Xi;mX0i;p
h ixi

xi�1

� �

¼ Di Xi;pðxiÞX0i;mðxiÞ � Xi;pðxi�1ÞX0i;mðxi�1Þ
h

�Xi;mðxiÞX0i;pðxiÞ þ Xi;mðxi�1ÞX0i;pðxi�1Þ
i
: ð66Þ

The same is done for the ‘iþ 1’th layer,

ðum �upÞ
Z xiþ1

xi

Xiþ1;mXiþ1;pdx

¼ Diþ1 Xiþ1;pðxiþ1ÞX0iþ1;mðxiþ1Þ � Xiþ1;pðxiÞX 0iþ1;mðxiÞ
h

�Xiþ1;mðxiþ1ÞX 0iþ1;pðxiþ1Þ þ Xiþ1;mðxiÞX 0iþ1;pðxiÞ
i
: ð67Þ

The interface conditions are

Xi;mðxiÞ ¼ Xiþ1;mðxiÞ; ð68Þ
ri

riþ1
Di
@Xi;m

@x


xi

¼ Diþ1
@Xiþ1;m

@x


xi

; ð69Þ

for i 2 ½1; n� 1� where ri ¼ qici,. Using these, Eq. (67) becomes

ðum �upÞ
Z xiþ1

xi

Xiþ1;mXiþ1;pdx

¼ Diþ1Xiþ1;pðxiþ1ÞX0iþ1;mðxiþ1Þ �
ri

riþ1
DiXi;pðxiÞX0i;mðxiÞ

� Diþ1Xiþ1;mðxiþ1ÞX 0iþ1;pðxiþ1Þ þ
ri

riþ1
DiXi;mðxiÞX 0i;pðxiÞ: ð70Þ

Adding ri times Eq. (66) and riþ1 times Eq. (70) then gives

ðum �upÞ ri

Z xi

xi�1

Xi;mXi;pdxþ riþ1

Z xiþ1

xi

Xiþ1;mXiþ1;pdx

" #

¼ riDi Xi;mðxi�1ÞX 0i;pðxi�1Þ � Xi;pðxi�1ÞX0i;mðxi�1Þ
h i

þ riþ1Diþ1 Xiþ1;pðxiþ1ÞX0iþ1;mðxiþ1Þ � Xi;mðxiþ1ÞX 0i;pðxiþ1Þ
h i

:

Therefore the middle, xi, points are always going to cancel out, leav-
ing only the end points, x ¼ x0 and x ¼ xn. That is,

ðum �upÞ
Xn

i¼1

ri

Z xi

xi�1

Xi;mXi;pdx

¼ r1D1½X1;mðx0ÞX 01;pðx0Þ � X1;pðx0ÞX 01;mðx0Þ�

þ rnDn Xn;pðxnÞX 0n;mðxnÞ � Xn;mðxnÞX 0n;pðxnÞ
h i

: ð71Þ

Given general boundary conditions at x ¼ x0:

a1X1;mðx0Þ þ b1X 01;mðx0Þ ¼ 0

a1X1;pðx0Þ þ b1X 01;pðx0Þ ¼ 0 ð72Þ

then for a1 and b1 both non-zero this requires the determinant

X1;mðx0ÞX01;pðx0Þ � X1;pðx0ÞX01;m ¼ 0 ð73Þ

and similarly at x ¼ xn. Hence Eq. (71) becomes

ðum �upÞ
Xn

i¼1

ri

Z xi

xi�1

Xi;mXi;pdx ¼ 0:

When um – up,



Fig. 6. Finite difference scheme indexing where i denotes the layer and j denotes
the spatial discretisation.
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Xn

i¼1

ri

Z xi

xi�1

Xi;mXi;pdx ¼ 0

and hence the orthogonality condition has been proven.
This proof is extendable to the jump interface conditions, Eq.

(23), although with more complicated algebra.

A.2. Finite difference scheme for layers

This explicit finite difference scheme uses second order central
differences with an Euler time step. An added complexity arises
from the layered nature of the problem. Fig. 6 depicts an interface
between layers with nomenclature and indexing. The inner points
of a layer use the standard first order time and second order space
finite differencing, that is

@Uj�1

@t
¼ Di

Dx2 ½Uj�2 � 2Uj�1 þ Uj�; ð74Þ

where Uj is the temperature at the spatial point j in layer i. The
point on the interface is found using the flux matching condition,
Eq. (25), as

@Uj

@t
¼ 1

Dx2 ½DiUj�1 � ðDi þ Diþ1ÞUj þ Diþ1Ujþ1� ð75Þ

where Uj lies on the intersection of the i and ðiþ 1Þ layers, as shown
in Fig. 6. Thus the differencing for this system can be illustrated by
the following matrix

d
dt

..

.

Uj�2

Uj�1

Uj

Ujþ1

Ujþ2

..

.

2
66666666666664
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77777777777775
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. .
.

. .
.

� � � vi �2vi vi 0 0 � � �
� � � 0 vi �vi�viþ1 viþ1 0 � � �
� � � 0 0 viþ1 �2viþ1 viþ1 � � �

. .
.

. .
.

2
666666666666664

3
777777777777775

..
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Uj�2

Uj�1

Uj

Ujþ1

Ujþ2

..

.

2
66666666666664

3
77777777777775
;

ð76Þ

where vi ¼ Di=Dx, and viþ1 ¼ Diþ1=Dx. This is easily extended to
multiple layers with numerous internal points and general bound-
0 5 10 15 20 25
0

0.5

1

1.5

2

Number of repeated layers

Ti
m

e

Num. [1, 0.1]
Num. [0.1, 1]
Single Dav

Fig. 5. Critical time versus number of repeated layers for a multilayer medium.
Results are calculated numerically using Eq. (61) with the first 20 terms. Here
L ¼ 1; li ¼ 1=n;a ¼ 0:4627; a1 ¼ 1; b1 ¼ 0; h1 ¼ 1; a2 ¼ 1; b2 ¼ 0; h2 ¼ 0; fi ¼ 0 and
Hi ¼ 20. Diffusivities are either [1, 0.1] or [0.1, 1]. ‘Single Dav’ uses the single layer
critical time, Eq. (20), with Dav ¼ 0:12 from Eq. (26).
ary conditions. This can then be iterated in time using standard
Euler time steps.
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